Abstract
| - Environmental pollution assessment and control are priority issues for both developed and developing countries of the world. The use of plant material for a more complete picture of environmental health appears to be particularly appealing. Here we validate a previous plant-adapted Comet assay on leaf tissues of Nicotiana tabacum cultivars Bel B and Bel W3. The effects of H2O2 on DNA damage in Bel B and Bel W3 agree with the hypothesis that some component of the machinery that protects DNA integrity from oxidative stress may be impaired in cv. Bel W3. Exposure in the field on sunny summer days (peak ozone concentration >80 p.p.b.) showed significantly higher DNA damage in cv. Bel W3 if plants were collected and subjected to the Comet assay when the air ozone concentration was reaching its peak value, but not when plants were sampled early in the morning and hence after a period of low ozone concentration. The different results suggest that Bel W3 possesses a less efficient recovery apparatus that requires a longer period of activity to be effective and/or is less protected against reactive oxygen species production during exposure to ozone. However, it cannot be excluded that the increase in mean DNA damage is the result of the presence of a genotoxic agent(s) other than ozone. Interestingly, Bel W3 also appears to be more responsive, compared with Bel B, when exposed to ambient indoor pollutants. The use of cv. Bel W3 increases the sensitivity of the assay under both indoor and field conditions. However, different classes of mutagens should be tested to define the range of profitable utilization of this tobacco cultivar for environmental genotoxicity detection.
|