Documentation scienceplus.abes.fr version Bêta

À propos de : Markoff type inequalities for curved majorants in the weightedL2 norm        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Markoff type inequalities for curved majorants in the weightedL2 norm
has manifestation of work
related by
Author
Abstract
  • Summary. The following problem was raised by P. Turán. Letϕ(x) ⩾ 0 for −1 ⩽x ⩽ 1 and consider the classPn,ϕ of all polynomials of degree n such that |pn(x)| ⩽ϕ(x) for −1 ⩽x ⩽ 1. How large can max-1 ⩽x ⩽ 1 |pn(k)(x)| be ifpn is an arbitrary polynomial belonging topn,ϕ? He pointed out two cases of special interest. These cases beingϕ(x) = (1 − x2)1/2,ϕ(x) = (1 − x2). The above problem has been extensively studied by Q. I. Rahman and his associates. The object of this paper is to consider the solution of the Turán problem in the weightedL2 norm. Main results of this paper may be summarized as follows. Theorem 1.Let pn+2 be any member of the set of those algebraic polynomials of degree n + 2 which have only real roots, all of them in the interval [−1, 1], and for which$$\left| {p_{n + 2} (x)} \right| \leqslant 1 - x^2 , - 1 \leqslant x \leqslant 1.$$ Then we have$$\begin{gathered} \int_{ - 1}^1 {(p'_{n + 2} (x))^2 (1 - x^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-ulldelimiterspace} 2}} dx} \leqslant \int_{ - 1}^1 {(f'_0 (x))^2 (1 - x^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-ulldelimiterspace} 2}} dx = \frac{\pi }{4}(n^2 + 4)} , \hfill \ \int_{ - 1}^1 {(p''_{n + 2} (x))^2 (1 - x^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-ulldelimiterspace} 2}} dx} \leqslant \int_{ - 1}^1 {(f''_0 (x))^2 (1 - x^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-ulldelimiterspace} 2}} dx} , \hfill \ end{gathered} $$ with equality iffpn + 2(x) = (1 − x2)Tn(x) = f0(x), Tn(x) = cosnθ, cosθ = x. Theorem 2. Let pn+2 be any real polynomial of degree n + 2 such that$$\left| {p_{n + 2} (x)} \right| \leqslant 1 - x^2 , - 1 \leqslant x \leqslant 1.$$ Then we have$$\int_{ - 1}^1 {\left| {p'''_{n + 2} (x)} \right|^2 (1 - x^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-ulldelimiterspace} 2}} dx} \leqslant \int_{ - 1}^1 {\left| {f'''_0 (x)} \right|^2 (1 - x^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-ulldelimiterspace} 2}} dx} ,$$ with equality iffpn+2(x) = f0(x), f0(x) = (1 −x2)Tn(x).
article type
publisher identifier
  • BF01844423
Date Copyrighted
  • 1993
Rights Holder
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata