This HTML5 document contains 16 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
n15http://hub.abes.fr/acs/periodical/jpcafh/
dctermshttp://purl.org/dc/terms/
marcrelhttp://id.loc.gov/vocabulary/relators/
vivohttp://vivoweb.org/ontology/core#
n14http://hub.abes.fr/acs/periodical/jpcafh/2001/volume_105/issue_45/
n7http://hub.abes.fr/acs/periodical/jpcafh/2001/volume_105/issue_45/101021jp012663o/m/
n2http://hub.abes.fr/acs/periodical/jpcafh/2001/volume_105/issue_45/101021jp012663o/
n5http://hub.abes.fr/acs/periodical/jpcafh/2001/volume_105/issue_45/101021jp012663o/authorship/
bibohttp://purl.org/ontology/bibo/
n13http://hub.abes.fr/acs/periodical/articletype/
rdachttp://rdaregistry.info/Elements/c/
hubhttp://hub.abes.fr/namespace/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
rdawhttp://rdaregistry.info/Elements/w/
n11http://hub.abes.fr/referentiel/acs/documenttypename/subject/
xsdhhttp://www.w3.org/2001/XMLSchema#
Subject Item
n2:w
rdf:type
bibo:Article rdac:C10001
dcterms:isPartOf
n14:w
dcterms:subject
n11:article
dcterms:title
The Ground- and Excited-State (1nπ* and 1ππ*) Carboxylic Acid-Catalyzed Proton(Hydrogen Atom)-Transfer Energy Surfaces in 3-Formyl-7-azaindole
rdaw:P10072
n7:web n7:print
vivo:relatedBy
n5:1 n5:2 n5:3
marcrel:aut
n2:choupitai n2:hungfatsai n2:huweiping
dcterms:abstract
Theoretical approaches on the ground- and excited-state proton (or hydrogen atom) transfer in the 3-formyl-7-azaindole (3FAI)/formic acid dual hydrogen-bonded complex were performed. In the ground state, theanalysis of the transition-state geometry led us to conclude a concerted, asynchronous proton-transfer patternthat correlates with the hydrogen-bonding strength. The lowest singlet excited state in the 3FAI/formic acidcomplex was calculated to be in an nπ* configuration. On the basis of frontier molecular orbital analyses, then → π* transition was concluded to originate from the carbonyl lone-pair electrons of the formyl substitute.A highly endergonic proton-transfer reaction barrier of ∼16.7 kcal/mol was calculated in the 1nπ* state at theCIS/6-31G(d‘,p‘) level of theory. The second excited singlet state possesses a ππ* configuration in which theexcited-state double proton transfer (ESDPT) takes place with a negligible energy barrier. The results providea theoretical rationalization of the competitive internal conversion/ESDPT mechanism previously proposedfor the 3FAI hydrogen-bonded complexes (J. Phys. Chem. A2000, 104, 8863).
hub:articleType
n13:researcharticle
hub:isPartOfThisJournal
n15:w