This HTML5 document contains 59 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
vivohttp://vivoweb.org/ontology/core#
marcrelhttp://id.loc.gov/vocabulary/relators/
dctermshttp://purl.org/dc/terms/
n16http://hub.abes.fr/edp/periodical/articletype/
n15http://orcid.org/0000-0003-2446-8882#
n4http://hub.abes.fr/edp/periodical/aa/2021/volume_648/issue_2021/aa39261-20/subject/
n6http://hub.abes.fr/edp/periodical/aa/2021/volume_648/issue_2021/aa39261-20/authorship/
n2http://hub.abes.fr/edp/periodical/aa/2021/volume_648/issue_2021/aa39261-20/
n18http://orcid.org/0000-0001-7455-5349#
n8http://orcid.org/0000-0001-8904-0401#
n21http://orcid.org/0000-0003-1817-6576#
n13http://hub.abes.fr/edp/periodical/aa/
n20http://hub.abes.fr/edp/periodical/aa/2021/volume_648/issue_2021/aa39261-20/m/
n9http://www.idref.fr/12352007X/
n11http://orcid.org/0000-0001-6156-0034#
bibohttp://purl.org/ontology/bibo/
rdachttp://rdaregistry.info/Elements/c/
hubhttp://hub.abes.fr/namespace/
n14http://hub.abes.fr/edp/periodical/aa/2021/volume_648/issue_2021/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
rdawhttp://rdaregistry.info/Elements/w/
n17http://hub.abes.fr/referentiel/edparticlecategories/subject/
xsdhhttp://www.w3.org/2001/XMLSchema#
n22http://orcid.org/0000-0002-8963-3810#
Subject Item
n2:w
rdf:type
rdac:C10001 bibo:Article
dcterms:isPartOf
n14:w
dcterms:subject
n4:methodsdataanalysis n4:infraredplanetarysystems n4:methodsobservational n4:protoplanetarydisks n4:infraredstars n17:interstellarandcircumstellarmatter
dcterms:title
New mid-infrared imaging constraints on companions and protoplanetary disks around six young stars
dcterms:date
2021-01-01
rdaw:P10072
n20:print n20:web
vivo:relatedBy
n6:10 n6:8 n6:3 n6:6 n6:4 n6:7 n6:2 n6:16 n6:5 n6:12 n6:13 n6:15 n6:9 n6:14 n6:1 n6:11
marcrel:aut
n8:person n9:id n2:vandenanckerme n2:pantine n2:quanzsp n11:person n2:rabch n2:siebenmorgenr n2:kasperm n2:kisslerpatigm n2:petitditdelarochedjm n15:person n2:waterslbfm n2:kampi n2:kauflhu n2:obergn n2:vanboekelr n2:ivanovvd n2:milespaezpa n2:fedeled n18:person n21:person n22:person
dcterms:abstract
Context. Mid-infrared (mid-IR) imaging traces the sub-micron and micron-sized dust grains in protoplanetary disks and it offers constraints on the geometrical properties of the disks and potential companions, particularly if those companions have circumplanetary disks. Aims. We use the VISIR instrument and its upgrade NEAR on the VLT to take new mid-IR images of five (pre-)transition disks and one circumstellar disk with proposed planets and obtain the deepest resolved mid-IR observations to date in order to put new constraints on the sizes of the emitting regions of the disks and the presence of possible companions. Methods. We derotated and stacked the data to find the disk properties. Where available, we compare the data to  PRODIMO (Protoplanetary Disk Model) radiation thermo-chemical models to achieve a deeper understanding of the underlying physical processes within the disks. We applied the circularised point spread function subtraction method to find upper limits on the fluxes of possible companions and model companions with circumplanetary disks. Results. We resolved three of the six disks and calculated position angles, inclinations, and (upper limits to) sizes of emission regions in the disks, improving upper limits on two of the unresolved disks. In all cases the majority of the mid-IR emission comes from small inner disks or the hot inner rims of outer disks. We refined the existing  PRODIMO HD 100546 model spectral energy distribution (SED) fit in the mid-IR by increasing the PAH abundance relative to the ISM, adopting coronene as the representative PAH, and increasing the outer cavity radius to 22.3 AU. We produced flux estimates for putative planetary-mass companions and circumplanetary disks, ruling out the presence of planetary-mass companions with L> 0.0028 L⊙ for a> 180 AU in the HD 100546 system. Upper limits of 0.5-30 mJy are obtained at 8-12 μm for potential companions in the different disks. We rule out companions with L> 10 −2L⊙ for a> 60 AU in TW Hydra, a> 110 AU in HD 169142, a> 150 AU in HD 163296, and a> 160 AU in HD 36112. Conclusions. The mid-IR emission comes from the central regions and traces the inner areas of the disks, including inner disks and inner rims of outer disks. Planets with mid-IR luminosities corresponding to a runaway accretion phase can be excluded from the HD 100546, HD 169142, TW Hydra, and HD 36112 systems at separations >1′′. We calculated an upper limit to the occurrence rate of wide-orbit massive planets with circumplanetary disks of 6.2% (68% confidence). Future observations with METIS on the ELT will be able to achieve a factor of 10 better sensitivity with a factor of five better spatial resolution. MIRI on JWST will be able to achieve 250 times better sensitivity. Both will possibly detect the known companions to all six targets.
hub:articleType
n16:researcharticle
hub:publisher-id
aa39261-20
dcterms:dateCopyrighted
2021-01-01
dcterms:rights
© ESO 2021
dcterms:rightsHolder
ESO
hub:isPartOfThisJournal
n13:w