This HTML5 document contains 22 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dctermshttp://purl.org/dc/terms/
vivohttp://vivoweb.org/ontology/core#
marcrelhttp://id.loc.gov/vocabulary/relators/
n4http://hub.abes.fr/oup/periodical/mnras/
n11http://orcid.org/0000-0002-9994-759X#
n6http://hub.abes.fr/oup/periodical/mnras/2010/volume_409/issue_1/101111j13652966201017313x/subject/
n12http://orcid.org/0000-0001-5246-1624#
bibohttp://purl.org/ontology/bibo/
n9http://hub.abes.fr/oup/periodical/mnras/2010/volume_409/issue_1/
n16http://hub.abes.fr/referentiel/ouparticlecategories/subject/
rdachttp://rdaregistry.info/Elements/c/
hubhttp://hub.abes.fr/namespace/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n18http://orcid.org/0000-0002-4677-5843#
n2http://hub.abes.fr/oup/periodical/mnras/2010/volume_409/issue_1/101111j13652966201017313x/
n14http://hub.abes.fr/oup/periodical/mnras/2010/volume_409/issue_1/101111j13652966201017313x/m/
rdawhttp://rdaregistry.info/Elements/w/
xsdhhttp://www.w3.org/2001/XMLSchema#
n19http://hub.abes.fr/oup/periodical/mnras/2010/volume_409/issue_1/101111j13652966201017313x/articletype/
n8http://hub.abes.fr/oup/periodical/mnras/2010/volume_409/issue_1/101111j13652966201017313x/authorship/
Subject Item
n2:w
rdf:type
rdac:C10001 bibo:Article
dcterms:isPartOf
n9:w
dcterms:subject
n6:cosmologyobservations n6:methodsdataanalysis n6:methodsnumerical n6:largescalestructureofuniverse n16:papers
dcterms:title
Bayesian non-linear large-scale structure inference of the Sloan Digital Sky Survey Data Release 7
rdaw:P10072
n14:print n14:web
vivo:relatedBy
n8:4 n8:2 n8:3 n8:1
marcrel:aut
n11:person n2:licheng n12:person n18:person
dcterms:abstract
In this work, we present the first non-linear, non-Gaussian full Bayesian large-scale structure analysis of the cosmic density field conducted so far. The density inference is based on the Sloan Digital Sky Survey (SDSS) Data Release 7, which covers the northern galactic cap. We employ a novel Bayesian sampling algorithm, which enables us to explore the extremely high dimensional non-Gaussian, non-linear lognormal Poissonian posterior of the three-dimensional density field conditional on the data. These techniques are efficiently implemented in the Hamiltonian Density Estimation and Sampling (hades) computer algorithm and permit the precise recovery of poorly sampled objects and non-linear density fields. The non-linear density inference is performed on a 750-Mpc cube with roughly 3-Mpc grid resolution, while accounting for systematic effects, introduced by survey geometry and selection function of the SDSS, and the correct treatment of a Poissonian shot noise contribution. Our high-resolution results represent remarkably well the cosmic web structure of the cosmic density field. Filaments, voids and clusters are clearly visible. Further, we also conduct a dynamical web classification and estimate the web-type posterior distribution conditional on the SDSS data.
hub:articleType
n19:researcharticle
hub:isPartOfThisJournal
n4:w