Abstract
| - Elimination reactions of 2-X-4-NO2C6H3CH2C(O)OC6H3-2-Y-4-NO2 [X = H (1), NO2 (2)] promotedby R2NH/R2NH2+ in 70 mol % MeCN(aq) have been studied kinetically. The base-promotedeliminations from 1 proceeded by the E2 mechanism when Y = Cl, CF3, and NO2. The mechanismchanged to the competing E2 and E1cb mechanisms by the poorer leaving groups (Y = H, OMe)and to the E1cb extreme by the strongly electron-withdrawing β-aryl group (2, X = NO2). The valuesof β = 0.14 and |βlg| = 0.10−0.21 calculated for elimination from 1 (Y = NO2) indicate a reactant-like transition state with small extents of proton transfer and Cα−OAr bond cleavage. The extentof proton transfer increased with a poorer leaving group, and the degree of leaving group bondcleavage increased with a weaker base. Also, the changes in the k1 and k-1/k2 values with thereactant structure variation are consistent with the E1cb mechanism. From these results, a plausiblepathway of the change of the mechanism from E2 to the E1cb extreme is proposed.
|