Abstract
| - Microarray-based gene expression analysis plays a pivotal role in modern biology and is poised to enter the field of molecular diagnostics. Current microarray-based gene expression systems typically require enzymatic conversion of mRNA into labeled cDNA or cRNA. Conversion to cRNA involves a target amplification step that overcomes the low sensitivity associated with commonly used fluorescent detection methods. Herein, we present a novel enzyme-free, microarray-based gene expression system that uses unamplified total human RNA sample as the target nucleic acid. The detection of microarray-bound RNA molecules is accomplished by targeting the poly-A tail with an oligo-dT20 modified gold nanoparticle probe, signal amplification by autometallography, and subsequent measurement of nanoparticle-mediated light scattering. The high sensitivity afforded by the nanoparticle probes allows differential gene expression from as little as 0.5 μg unamplified total human RNA in a 2 h hybridization without the need for elaborate sample labeling steps.
|