Abstract
| - In the present study we have studied the effect of resveratrol in signal transduction mechanisms leading to apoptosis in 3T3 fibroblasts when exposed to 4-hydroxynonenal (HNE). In order to gain insight into the mechanisms of apoptotic response by HNE, we followed MAP kinase and caspase activation pathways; HNE induced early activation of JNK and p38 proteins but downregulated the basal activity of ERK ½. We were also able to demonstrate HNE-induced release of cytochrome c from mitochondria, caspase-9, and caspase-3 activation. Resveratrol effectively prevented HNE-induced JNK and caspase activation, and hence apoptosis. Activation of AP-1 along with increased c-Jun and phospho-c-Jun levels could be inhibited by pretreatment of cells with resveratrol. Moreover, Nrf2 downregulation by HNE could also be blocked by resveratrol. Overexpression of dominant negative c-Jun and JNK1 in 3T3 fibroblasts prevented HNE-induced apoptosis, which indicates a role for JNK-c-Jun/AP-1 pathway. In light of the JNK-dependent induction of c-Jun/AP-1 activation and the protective role of resveratrol, these data may show a critical potential role for JNK in the cellular response against toxic products of lipid peroxidation. In this respect, resveratrol acting through MAP kinase pathways and specifically on JNK could have a role other than acting as an antioxidant-quenching reactive oxygen intermediate.
|