Documentation scienceplus.abes.fr version Bêta

À propos de : Investigation of Drug-Induced Mitochondrial Toxicity Using Fluorescence-Based Oxygen-Sensitive Probes        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Investigation of Drug-Induced Mitochondrial Toxicity Using Fluorescence-Based Oxygen-Sensitive Probes
has manifestation of work
related by
Author
Abstract
  • Mitochondrial dysfunction is a common mechanism of drug-induced toxicity. Early identification of new chemical entities (NCEs) that perturb mitochondrial function is of significant importance to avoid attrition in later stages of drug development. One of the most informative ways of assessing mitochondrial dysfunction is by measuring mitochondrial oxygen consumption. However, the conventional polarographic method of measuring oxygen consumption is not amenable to high sample throughput or automation. We present an alternative, low-bulk, high-throughput approach to the analysis of isolated-mitochondrial oxygen consumption using luminescent oxygen-sensitive probes. These probes are dispensable and are analyzed in standard microtitre plates on a fluorescence plate reader. Respiratory substrate and adenosine diphosphate (ADP) dependencies of mitochondrial oxygen consumption were assessed using the fluorescence-based method, and results compared favourably to conventional polarographic analysis. To assess assay performance, the method was then applied to the analysis of a panel of classical modulators of oxidative phosphorylation. The effect of uncoupler concentration was analyzed in detail to identify factors which would be important in applying this method to large scale NCE screening and mechanistic investigations. Results demonstrate that the 96-well format can accommodate up to ∼ 200 compounds/day at a single concentration or alternatively IC50 values can be generated for ∼ 25 compounds. Throughput may be increased by moving to a 384-well plate format.
article type
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata