Documentation scienceplus.abes.fr version Bêta

À propos de : Azaspiracid-1 Alters the E-cadherin Pool in Epithelial Cells        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Azaspiracid-1 Alters the E-cadherin Pool in Epithelial Cells
has manifestation of work
related by
Author
Abstract
  • Azaspiracids cause severe damages in the epithelium of several organs. In this study we have investigated the effects of azaspiracid-1 (AZA-1) on two epithelial cell lines. Nanomolar concentrations of AZA-1 reduced MCF-7 cell proliferation and impaired cell-cell adhesion. AZA-1 altered the cellular pool of the adhesion molecule E-cadherin by inducing a dose- and time-dependent accumulation of an E-cadherin fragment (E-cadherin-related antigen [ECRA100]), with a concentration inducing the half-maximal effect (EC50) of 0.47nM. The immunological characterization of ECRA100 revealed that it consists of an E-cadherin molecule lacking the intracellular domain, and these data showed that the effect induced by AZA-1 in MCF-7 cells is undistinguishable from that induced by yessotoxin (YTX) in the same experimental system. A comparison of toxin effects in MCF-7 and Caco 2 cells confirmed that the effects induced by AZA-1 and YTX are undistinguishable in these cells. Treatment of fibroblasts with AZA-1 did not affect the cellular pool of N-cadherin showing that the toxin effect is cadherin-specific. A comparison of the effects induced by AZA-1, YTX, and okadaic acid on F-actin and E-cadherin in MCF-7 and Caco 2 cells showed that 1nM AZA-1 did not cause significant changes in F-actin and that accumulation of ECRA100 did not correlate with decreased levels of F-actin under our experimental conditions. Matching our results with those available in literature, we notice that, when molecular effects induced by AZA-1 and YTX have been studied in the same in vitro systems, experimental data show that they are undistinguishable in terms of sensitive cellular parameters, effective doses, and kinetics of responses in several cell lines. The possibility that azaspiracids and YTXs might share their molecular mechanism(s) of action in defined biological settings should be considered.
article type
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata