science
plus
.abes.fr
|
explorer
À propos de :
Tetko Igor V.
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
foaf:Person
, within Data Space :
scienceplus.abes.fr
associated with source
document(s)
Type:
Person
New Facet based on Instances of this Class
Attributs
Valeurs
type
Person
name
Tetko Igor V.
Tetko Igor
Tetko I. V.
personal mailbox
i.tetko@gsf.de
familyName
Tetko
Given name
Igor
I. V.
Igor V.
is
relates
of
http://hub.abes.fr/acs/periodical/jcics1/1995/volume_35/issue_5/101021ci00027a006/authorship/1
http://hub.abes.fr/acs/periodical/jmcmar/1993/volume_36/issue_7/101021jm00059a003/authorship/1
http://hub.abes.fr/acs/periodical/jcics1/2001/volume_41/issue_2/101021ci000393l/authorship/1
http://hub.abes.fr/oup/periodical/bioinformatics/2004/volume_21/issue_8/101093bioinformaticsbti200/authorship/6
http://hub.abes.fr/oup/periodical/nar/2005/volume_33/issue_suppl2/101093nargki434/authorship/2
http://hub.abes.fr/acs/periodical/jcics1/2002/volume_42/issue_5/101021ci025515j/authorship/1
http://hub.abes.fr/oup/periodical/bioinformatics/2004/volume_20/issue_17/101093bioinformaticsbth376/authorship/2
http://hub.abes.fr/oup/periodical/nar/2004/volume_32/issue_18/101093nargkh894/authorship/7
http://hub.abes.fr/oup/periodical/bioinformatics/2004/volume_20/issue_5/101093bioinformaticsbtg462/authorship/2
http://hub.abes.fr/oup/periodical/bioinformatics/2005/volume_21/issue_10/101093bioinformaticsbti380/authorship/1
http://hub.abes.fr/oup/periodical/nar/2006/volume_34/issue_1/101093nargnj002/authorship/2
http://hub.abes.fr/acs/periodical/jcics1/2001/volume_41/issue_5/101021ci010368v/authorship/1
http://hub.abes.fr/acs/periodical/jcics1/1998/volume_38/issue_4/101021ci970439j/authorship/1
http://hub.abes.fr/acs/periodical/jcics1/2002/volume_42/issue_3/101021ci010379o/authorship/1
http://hub.abes.fr/oup/periodical/bioinformatics/2008/volume_24/issue_5/101093bioinformaticsbtm633/authorship/1
http://hub.abes.fr/acs/periodical/jcisd8/2008/volume_48/issue_9/101021ci800151m/authorship/1
http://hub.abes.fr/acs/periodical/jmcmar/2001/volume_44/issue_15/101021jm010858e/authorship/1
http://hub.abes.fr/acs/periodical/jmcmar/2004/volume_47/issue_23/101021jm049509l/authorship/1
http://hub.abes.fr/acs/periodical/jcisd8/2008/volume_48/issue_4/101021ci700443v/authorship/10
http://hub.abes.fr/acs/periodical/jcics1/2001/volume_41/issue_6/101021ci000392t/authorship/1
http://hub.abes.fr/acs/periodical/jcics1/2000/volume_40/issue_4/101021ci9904261/authorship/3
http://hub.abes.fr/acs/periodical/jcisd8/2006/volume_46/issue_2/101021ci0504216/authorship/1
http://hub.abes.fr/acs/periodical/ancham/1999/volume_71/issue_13/101021ac981345r/authorship/2
http://hub.abes.fr/acs/periodical/ancham/1999/volume_71/issue_13/101021ac981346j/authorship/1
http://hub.abes.fr/acs/periodical/jcics1/1996/volume_36/issue_4/101021ci950204c/authorship/1
http://hub.abes.fr/acs/periodical/jcisd8/2007/volume_47/issue_3/101021ci600493x/authorship/3
http://hub.abes.fr/acs/periodical/jcics1/1998/volume_38/issue_4/101021ci980325n/authorship/2
http://hub.abes.fr/acs/periodical/jmcmar/1994/volume_37/issue_16/101021jm00042a005/authorship/1
http://hub.abes.fr/springer/periodical/11237/1994/volume_29/issue_2/B8F45204EEE82570E053120B220A2340/authorship/3
http://hub.abes.fr/springer/periodical/11094/1996/volume_30/issue_6/B906B379BDD462D9E053120B220A6C85/authorship/4
http://hub.abes.fr/springer/periodical/11094/1992/volume_26/issue_2/B906B379BC3562D9E053120B220A6C85/authorship/2
http://hub.abes.fr/springer/periodical/11237/1994/volume_29/issue_1/B8F45204EED82570E053120B220A2340/authorship/1
is
Author
of
Applications of neural networks in structure-activity relationships of a small number of molecules
Modified Hopfinger analysis of the phosphodiesterase inhibiting activity of flavonoids
Benchmarking of Linear and Nonlinear Approaches for QuantitativeStructure−Property Relationship Studies of Metal Complexation with Ionophores
The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes
Éclair—a web service for unravelling species origin of sequences sampled from mixed host interfaces
Neural Network Studies. 4. Introduction to Associative Neural Networks
Optimization models for cancer classification: extracting gene interaction information from microarray expression data
Application of Associative Neural Networks for Prediction of Lipophilicity in ALOGPS2.1 Program
A web portal for classification of expression data using maximal margin linear programming
MIPS bacterial genomes functional annotation benchmark dataset
Beyond the ‘best’ match: machine learning annotation of protein sequences by integration of different sources of information
A systematic approach to infer biological relevance and biases of gene network structures
Pharmaceutical Fingerprinting in Phase Space. 2.Pattern Recognition
Critical Assessment of QSAR Models of Environmental Toxicity against Tetrahymena pyriformis: Focusing on Applicability Domain and Overfitting by Variable Selection
Internet Software for the Calculation of the Lipophilicity and Aqueous Solubility ofChemical Compounds
Application of ALOGPS 2.1 to Predictlog D Distribution Coefficient for PfizerProprietary Compounds
Pharmaceutical Fingerprinting in Phase Space. 1.Construction of Phase Fingerprints
Support vector machines for separation of mixed plant-pathogen EST collections based on codon usage
Application of a Pruning Algorithm To Optimize Artificial Neural Networks forPharmaceutical Fingerprinting
Neural Network Modeling for Estimation of Partition Coefficient Based on Atom-TypeElectrotopological State Indices
Neural Network Studies. 2. Variable Selection
Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices
Prediction of n-Octanol/Water Partition Coefficients from PHYSPROP Database UsingArtificial Neural Networks and E-State Indices
Neural Network Studies. 3. Variable Selection in the Cascade-Correlation LearningArchitecture
Exhaustive QSPR Studies of a Large Diverse Set of Ionic Liquids: How Accurately CanWe Predict Melting Points?
Volume Learning Algorithm Artificial Neural Networks for 3D QSAR Studies
Combinatorial QSAR Modeling of Chemical Toxicants Tested against Tetrahymena pyriformis
Study of the structure-activity relationship in a series of physiologically active substances with a common trend of action upon the cell signaling system
Use of topological indexes for prediction of the activity of 5-lipoxygenase inhibitors in a series of hydroxamates
Detection of elements of structural commonality of substances with similar effects on the cell signal systems
Neural network studies. 1. Comparison of overfitting and overtraining
HIV-1 Reverse Transcriptase Inhibitor Design Using Artificial Neural Networks
Alternative Linked Data Documents:
ODE
Content Formats:
RDF
ODATA
Microdata